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SYNCHRO-BETATRON EFFECTS IN HADRON MACHINES 

King-Yuen Ng 

Fermi National Accelerator Laboratory,* P.O. Box 500, Batavia, IL 60510 

I. SYNCHRO-BETATRON RESONANCES 

In electron machines, there are strong synchrotron radiation and random excitations, and 
high rf voltage is necessary to compensate for the energy loss. The synchrotron tune is therefore 
rather large and is of the order of u, N 0.1. In proton machines, however, synchrotron radiation 
is negligibly small, and the rf voltage is therefore much smaller. Typically, we have u, N 0.001 
for big rings like the Fermilab Main Ring, Tevatron, and the SSC. For this reason, synchro- 
betatron coupling resonance (SBR) d oes not occur in big proton rings. 

Exceptions are smaller rapid-cycling proton boosters, where high rf voltage is necessary. 
The Fermilab Booster has a cycling rate of 15 Hz, with an rf voltage that can be ramped to 
N 0.8 MV. With an injection energy of 200 MeV, the synchrotron tune can reach a maximum 
of u, N 0.075 in less than 2 msec. The space-charge tune shift is N 0.3. In order to avoid the 
half-integer resonance, the bare betatron tunes are usually pushed up to up = 6.8 or 6.9. It was 
reported that the Booster cannot operate with vp up to 6.95. It is possible that SBR occurs in 
this regime. 

II. SYNCHRO-BETATRON EFFECTS 

Besides SBR, there are also other synchro-betatron effects. For example, the small and 
slow synchrotron oscillations can serve as a modulation to the betatron motion, and lead to 
transverse and/or longitudinal emittance growth. This is similar to the perturbation by noise 
and current ripple when there is nonzero dispersion at the rf. 

An experiment was performed at the Tevatron, [l] w h ere random noise was added to the rf 
phase at the betatron sideband frequency fb, and the horizontal emittance growth rate r was 
measured. The bunch had an energy E, revolution frequency fo, in a bucket with rf voltage V. 
Theoretically, the growth rate is 

r = 8Afs 
f,2H (g2 p(.fb)~” , (2.1) 

where 

H = j ID2 + (PO’ - $‘D)“l . P-2) 

In the above, &fb) is the Fourier transform of the perturbing rf phase integrated over the 
frequency bin Afo at the betatron sideband, whereas ,0, D, p’, and D’ are the betatron function, 
dispersion function and their derivatives at the rf. For the Tevatron, H N 0.090 f 0.020 m. The 
experimental result is plotted in Fig. 1 with the growth rate of r = (3.3 f 0.7) x lO-71J12 m- 
rad/sec, while the theoretical rate is r = (4.3 f 0.9) x 1O-71J12 m-rad/sec. 

*Operated by the Universities Research Association, Inc., under contract with the U.S. Department of Energy. 
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III. GROUND MOTION 

Ground movements of the quadrupoles and current ripples in the dipoles will couple to the 
longitudinal phase space and lead to emittance growth. Since the synchrotron frequency of the 
SSC would have been fs - 3 to 4 Hz, the effect of ground motion to the SSC can be very 
significant. 

An experiment was performed at IUCF by modulating a Panofsky dipole and monitoring 
the longitudinal phase space. [2] Th e modulation gives an island system of order one in the 
longitudinal phase space, and the bunch area will be increased. 

The most important sources of ground motion at the SSC site are a train passing 20 m above 
the tunnel and some quarry blasts 9 miles away. The conclusion drawn by the experiment is: 
the train passing may increase the bunch area by - SO%, and the quarry blast by 200%. These 
increases are finite, because the spectra of these perturbations peak sharply at some frequencies. 
For a source of random movement, the growths will be unbounded. 

IV. CURRENT RIPPLE 

Current ripple in the dipoles will produce betatron motion and will be coupled to the 
longitudinal phase space if the dispersion at the dipoles is nonzero. 

When the synchrotron frequency is ramped upward through the frequency of the current 
ripple at fn = 60 Hz, the island of order one in the longitudinal phase space discussed in the 
previous section will move outward. If the ramping rate is small enough, there will be adiabatic 
trapping and particles will move even outside the bucket, as shown by the simulation in Fig. 2. 
The condition for this to occur is [3] 

Au .9 < %a4i3v 
8 my (4.1) 

where Av, is the increase of the synchrotron tune per turn, V, is the tune of the perturbation, 
and a is the driving amplitude. 

For the Relativistic Heavy Ion Collider (RHIC), th e ramp rate is Av, = 2.45 x lo-’ per 
turn in the vicinity of fs = 60 Hz. Adiabatic trapping will occur when the current ripple is as 
high as E = 2 x 10B5. A modification of the design has been made. 

V. PHASE DIAGRAM AND CHAOS 

The transverse phase space is always modulated by synchrotron oscillation or some other 
oscillations. It is important to study the modulated phase space. 

When a resonance frequency &I is modulated by q sin 2rnQ,, where n is the turn number, 
the effects of the modulation can be plotted as different phases in the q-Qm space. Such a plot 
was illustrated by Peggs [4] in Fig. 3. The boundary between the regions of strong sidebands 
and chaos is the condition of overlapping sideband islands, while the other boundaries are given 
by the validity of the small-angle driven pendulum solution. However, recently Zimmerman [5] 
suggested a different criterion for the boundary of the chaotic region by taking into account the 
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thickness of the stochastic layer near the separatrices. His q-Qm phase diagram is illustrated 
in Fig. 4, where the dotted curves are the suggested chaotic boundary. There are important 
differences between Figs. 3 and 4. Figure 3 shows that the region where Qm - &I is highly 
chaotic no matter how small the modulation amplitude q is. It also predicts a stable region of 
strong sideband. This is obviously not so in Fig. 4. Zimmerman performed a simple octupole- 
kick-map with result of stability shown as open circles and stochasticity as solid circles in Fig. 4, 
which confirm his chaotic criterion. On the other hand, there are in Fig. 3 also the simulation 
results of Satogata, [6] h w ere he tracked for the disappearance of the stable fixed points of the 
island chain. The simulations do conform to the partitions of Fig. 3. 

We therefore have a contradiction: Which chaotic criterion is correct? For this we need 
to answer first the question: What is chaos ? Peggs defined it as the disappearance of stable 
fixed point, while Zimmerman’s definition corresponds to global chaos, when the chaotic regions 
are all connected. Recently Lee et al. [7] studied a modulated double rf cavity system. The 
central region of the longitudinal phase space should be in chaos, because of the overlapping 
of infinitely many higher-order island chains. A simulation is shown in Fig. 5 with the central 
region magnified. We definitely see that this region is in chaos, although there are still isolated 
islands with stable flow trajectories. This is a situation of global chaos but not the type of chaos 
defined by Peggs. In other words, Peggs’ definition seems to be more stringent. However, this 
still cannot answer why there is chaos in Peggs’ case when Qm - &I even at small modulated 
amplitude but not in Zimmerman’s case. Further understanding is necessary. 

VI. EXTRACTION 

Resonances need not be bad. For example, the half-integer and third-integer resonances 
have been successfully used for beam extraction. Peggs et al. [8] demonstrated that the SBR 
can be used to transport beam to a crystal for crystal channeling extraction. 
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Figure 1: Rate of growth of horizontal emittance as a function of rms phase noise. 
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Figure 2: Adiabatic trapping of a bunch particle due to current ripple at 60 Hz. 
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Figure 3: Plot of modulation amplitude versus modulation frequency. The 
partition of the q-Qm space is given by Peggs. [4] The points are simulation 
results of Satogata [6] for the disappearance of the stable island fixed point. 



Phase Diagram, n=4, Q,=0.049, w=O.O5,0.1,0.2,0.3 
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Figure 4: Plot of modulation amplitude versus modulation frequency. The 
dot ted curves are the boundary of the chaotic region given by Zimmerman, [5] 
whose simulation results are denoted by black (chaotic) and open (nonchaotic) 
circles. 
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Figure 5: (a) Plot of the longitudinal phase space for a double rf system. At 
the center of the phase space magnified in the lower plot (b), isolated stable 
islands are seen in the sea of global chaos. 


